The role of multisensory interplay in enabling temporal expectations

Publication Type:

Journal Article

Source:

Cognition, Volume 170, Number Supplement C, p.130 - 146 (2018)

URL:

http://www.sciencedirect.com/science/article/pii/S0010027717302585

DOI:

https://doi.org/10.1016/j.cognition.2017.09.015

Keywords:

Auditory dominance, Multisensory interplay, Redundant target, Spatial coincidence, Temporal expectation, Temporal orienting

Abstract:

Abstract

Temporal regularities can guide our attention to focus on a particular moment in time and to be especially vigilant just then. Previous research provided evidence for the influence of temporal expectation on perceptual processing in unisensory auditory, visual, and tactile contexts. However, in real life we are often exposed to a complex and continuous stream of multisensory events. Here we tested – in a series of experiments – whether temporal expectations can enhance perception in multisensory contexts and whether this enhancement differs from enhancements in unisensory contexts. Our discrimination paradigm contained near-threshold targets (subject-specific 75% discrimination accuracy) embedded in a sequence of distractors. The likelihood of target occurrence (early or late) was manipulated block-wise. Furthermore, we tested whether spatial and modality-specific target uncertainty (i.e. predictable vs. unpredictable target position or modality) would affect temporal expectation (TE) measured with perceptual sensitivity (

) and response times (RT). In all our experiments, hidden temporal regularities improved performance for expected multisensory targets. Moreover, multisensory performance was unaffected by spatial and modality-specific uncertainty, whereas unisensory TE effects on but not RT were modulated by spatial and modality-specific uncertainty. Additionally, the size of the temporal expectation effect, i.e. the increase in perceptual sensitivity and decrease of RT, scaled linearly with the likelihood of expected targets. Finally, temporal expectation effects were unaffected by varying target position within the stream. Together, our results strongly suggest that participants quickly adapt to novel temporal contexts, that they benefit from multisensory (relative to unisensory) stimulation and that multisensory benefits are maximal if the stimulus-driven uncertainty is highest. We propose that enhanced informational content (i.e. multisensory stimulation) enables the robust extraction of temporal regularities which in turn boost (uni-)sensory representations.